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correction approach (Roberts et al., 1986) assumes that there is an area
in the scene that has spectrally neutral reflectances, i.e., the spectrum
has little variation with wavelength. The mean spectrum of the “flat
field” is then used for the derivation of relative reflectance spectra of
other pixels in the scene. Both the IAR approach and the “flat field”
approach do not need any field measurements of reflectance spectra
of surface targets. The derived relative reflectance spectra often have
absorption features that are not present in reflectance spectra of com-
parable materials measured in the field or laboratory (Clark & King,
1987). The reason is that the mean spectrum of the “flat field” often
contains absorption effects of surface materials and is not 100% spec-
trally neutral. The use of such mean spectrum in the derivation of
relative reflectance spectra of other pixels can introduce broad absorp-
tion bands in the resulting spectra.

The empirical line approach (Conel et al., 1987) requires field-
measurements of reflectance spectra for at least one bright target and
one dark target. The imaging spectrometer data over the surface
targets are linearly regressed against the field-measured reflectance
spectra to derive the gain and offset curves. The gain and offset curves
are then applied to the whole image for the derivation of surface
reflectances for the entire scene. Thismethodproduces spectra that are
most comparable to reflectance spectra measured in the field, or in
the laboratory (Aspinall et al., 2002). However, if changes occur in the
atmospheric properties outside the area used for the empirical line
approach, which is often the case, the spectral reflectance data will
contain atmospheric features.

For atmospheric corrections over the darker water surfaces, an
empirical “cloud shadow” method was developed in the 1990s
(Reinersman et al., 1998). This method calculates the differences
between the total radiance valuesmeasured by the sensor over cloud-
shaded pixels and the neighboring pixels having similar optical
properties. The differences are then used for the removal of the nearly
identical atmospheric radiance contributions from the measured
data. Another implementation of the cloud shadow method has been
described by Lee et al. (2005). Shadows cast by trees and cliffs along
coastlines in high spatial resolution (~1 m) hyperspectral imagery have
recently been used by Filippi et al. (2006) for atmospheric corrections.

It should be pointed out that the absolute radiometric calibration
of hyperspectral imagers is not required when using these empirical
approaches for the estimates of relative surface reflectances. However,
to apply these approaches the hyperspectral imaging system must
remain stable over the duration of the data acquisition.

3. Radiative transfer modeling approaches for land

Around 1987, Alexander F. H. Goetz first perceived the need for
developing an atmospheric correction technique using radiative transfer
modeling, given the limitations of the empirical approaches for surface
reflectance retrievals. The thought was soon realized with the develop-
mentof theAtmosphereRemoval algorithm(ATREM)(Gaoet al.,1993) for
retrieving land surface reflectance spectra from hyperspectral imaging
data using a theoretical modeling technique, which simulates explicitly
the absorption and scattering effects of atmospheric gases and aerosols.

3.1. Atmospheric effects and radiative transfer formulations

The solar radiation on the sun-surface-sensor path is affected by
absorption and scattering effects from atmospheric gases and aerosols.
Accurate modeling of these effects is required in order to derive
surface reflectance spectra from imaging spectrometer data. Among
the approximately thirty atmospheric gases, only eight gases, namely
water vapor (H2O), carbon dioxide (CO2), ozone (O3), nitrous oxide
(N2O), carbon monoxide (CO), methane (CH4), oxygen (O2), and
nitrogen dioxide (NO2) produce observable absorption features in
imaging spectrometer data over the range 0.4 to 2.5 µm with a
spectral resolution between 1 and 20 nm. Fig. 2 shows examples of
simulated atmospheric transmittances for the eight gases. Approxi-
mately half of the spectral region between 0.4 and 2.5 µm is affected
by atmospheric water vapor absorption. The absorption effects from
the other seven gases are generally located in much narrower wave-
length intervals.

Atmospheric gaseous molecules and aerosols scatter solar radia-
tion. The short wavelength region between 0.4 and 0.7 µm is strongly
affected by molecular scattering (Rayleigh scattering). Its effect
decreases rapidly with increasing wavelength (λ−4). The aerosol
scattering effect also decreases with increasing wavelength, but at
a slower rate (typically λ−2 to λ−1).

The radiances measured with an imaging spectrometer from a
satellite include atmospheric path radiances (due to Rayleigh and
aerosol scattering) and surface-reflected solar radiances. These
radiances are often converted to “apparent reflectances” (e.g., Gao
et al., 1993; Tanre et al., 1986). The definition of apparent reflectance is
given by

ρ⁎
obs λ; θ;/; θo;/oð Þ = πLobs λ; θ;/; θo;/oð Þ= μoFo λð Þ½ $; ð1Þ

Fig. 1. A sample AVIRIS spectrum. Several absorption bands of atmospheric gases are easily seen.

S18 B.-C. Gao et al. / Remote Sensing of Environment 113 (2009) S17–S24
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1. Electronic effects - the 

time-dependent radiometric 
response of each detector
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and spectral “view” of each 
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3. Calibration to the S.I. 
(absolute spectroradiometry)
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Empirical channel positions
[Thompson et al., Atmospheric Measurement Techniques 2015]
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Empirical  
spectral 
response 
[Thompson et al., Remote 
Sensing of Environment 
2018]
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H2O Vapor maps
[Thompson et al., Surveys in Geophysics 2018]
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Central Valley Agriculture (HyspIRI Santa Barbara Box)



Improving accuracy with simultaneous 
fitting of water vapor, ice, and liquid
[Thompson et al., Remote Sensing of Environment 2015] 
[Green et al., Water Resources Research 2006]

david.r.thompson@jpl.nasa.gov 
8/12/20

18

modifications to gas absorption coefficients and new retrievals of pres-
sure altitude. Our principal contribution is an enhanced water vapor
estimate using a linearized full-spectrum fit (Gao & Goetz, 1995) that
accounts for liquid and ice absorption. Simulations show that conven-
tional methods for estimating water vapor have biases over vegetated
and snow-covered terrain, and that the proposed spectral fitting ap-
proach reduces these errors. The retrieval simultaneously estimates op-
tical absorption paths for vapor, liquid, and ice phases of water. This
reduces biases in the water vapor estimates and provides new products
for hydrology studies (Green et al., 2006).

We evaluate the atmospheric correction approach using a represen-
tative set of data from the HyspIRI Preparatory Campaign. We hope to
answer the following questions:

● What is the stability of reflectance across multiple flightlines?
● How accurate is the resulting reflectance measurement?
● Is the retrieved water vapor correlated with vegetation cover?
● Howdo the three phases ofwater vary over time, region and altitude?

We consider 40 flightlines covering a range of altitudes and ecosys-
tems. The flights extend from Santa Barbara, California, to the north side
of Yosemite National Park. We evaluate reflectance using a diverse set
of ground targets from a low elevation coastal area to a high elevation in-
land area. Finally,we conclude by discussing the observed trends inwater
phases and remaining sources of error in the reflectance calculation.

2. Atmospheric correction approach

Atmospheric correction transforms themeasured at-sensor radiance
to apparent surface reflectance. We will use “reflectance” here in the
ordinary sense, referring to an equivalent Lambertian reflectance
(Schaepman-Strub, Schaepman, Painter, Dangel, & Martonchik, 2006).
Prior atmospheric correction codes include ACORN (Kruse, 2004),
FLAASH (Perkins et al., 2012), and ATCOR (Richter & Schläpfer, 2002).
Reviews comparing these methods in greater depth are provided by
Gao, Montes, Davis, and Goetz (2009) and Kruse (2004). One can also
calculate surface reflectance using an iterative optimal estimation,
such as the OCO-2 level 2 algorithm (Crisp et al., 2012). This involves
synthesizing a Top of Atmosphere (TOA) spectrum that incorporates

scattering, surface reflectance and gaseous absorption across multiple
layers of a vertical atmospheric column. The error and its derivatives
define a nonlinear least squares problem that can be solved by
repeatedly generating new spectra and refining the atmospheric state
estimate until reaching a local error minimum. These techniques'
computational efficiency is improving (O'Dell, 2010), but they require
solving the radiative transfer equations many times for each retrieval
and thus remain prohibitively slow for applications involving billions
of spectra.

The ATmosphere REMoval code, or ATREM (Gao & Goetz, 1990; Gao,
Heidebrecht, & Goetz, 1993), forms the basis of an atmospheric correc-
tion approach that can be practically applied to HyspIRI Preparatory
Campaign data. The coupling effects between gaseous absorption and
atmospheric scattering are neglected in ATREM. This simplification is
valid for spectral regions where gaseous absorption is weak, or for re-
gionswhere the scattering effects are small. It is less accurate for low in-
cidence angles, since longer path lengths increase coupling between
absorption and scattering. We first calculate an illumination-invariant
Top of Atmosphere (TOA) reflectance ρ, defined as:

ρ ¼ πL
F cos θð Þ

: ð1Þ

Here L represents the radiance in W/sr/nm/cm2 measured by the
instrument, and F the solar downward irradiance in W/nm/cm2 at the
top of the atmosphere (Kneizys, Shettle, Abreu, Chetwynd, & Anderson,
1988). Both terms depend on wavelength λ (omitted for clarity).
Here θ represents the solar zenith angle. We use the relation:

ρ ¼ Tg ra þ
rsTdTu

1−srsð Þ

! "
: ð2Þ

The symbol Tg is the gaseous transmittance of the atmosphere,
ra represents the total reflectance of the atmosphere along the optical
path, rs is the surface reflectance, Tu and Td represent upward anddown-
ward transmittances (both direct and diffuse). Here s is the spherical
albedo of the atmosphere producing an isotropic irradiance at the sur-
face. Technically the reflectance retrieved by the Level 2 algorithm is
bi-conical, but the atmospheric correction assumes that the surface is
Lambertian. This is a convenient approximation, and is most accurate

Fig. 1. Transmittance due to atmospheric gases and surface water phases. Ice and liquid water features can distort the shape of the 940 nm and 1140 nm absorption bands used for
atmospheric retrievals. Absorption coefficients for liquid water and ice are calculated from their complex indices of refraction (Kou et al., 1993).

2 D.R. Thompson et al. / Remote Sensing of Environment xxx (2015) xxx–xxx

Please cite this article as: Thompson, D.R., et al., Atmospheric correction for global mapping spectroscopy: ATREM advances for the HyspIRI
preparatory campaign, Remote Sensing of Environment (2015), http://dx.doi.org/10.1016/j.rse.2015.02.010
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we retrieve this quantity independently. Next we use the band depth
water vapor retrieval to initialize H2O absorption coefficients; the
precalculated Lookup Tables (LUTs) provide transmissions representing
total H2O absorption at all atmospheric layers from which we calculate
the absorption coefficient of the equivalent homogeneous atmosphere.
Finally, we refine path lengths for all three phases using the nonnega-
tive linear least squares solver.

We evaluated the accuracy of this approach using artificial scenes
with known amounts ofwater as liquid, gas, and ice.We synthesized ra-
diances starting froma reflectance spectrumof “rangeland terrain” from
theUSGS spectral library. This served as a featureless baseline for adding

absorption. Its slope across the 1140 nmbandwas approximately 30% of
themagnitudemaking it a challenging case for linearized continuumas-
sumptions.We synthesized radiance spectra by adding absorption from
known amounts of liquid and ice, simulating atmospheric scattering
and then applying the relation of Eq. (2).We then performed a complete
retrieval using the standard band depth technique and proposed atmo-
spheric correction algorithm. For a vapor-only spectrum there was no
ambiguity and the retrieval was perfect to within numerical precision.
This result degraded as other absorbers were added.

Fig. 3 shows error contours of the vapor estimate, calculated under
interference by different amounts of liquid and ice. The traditional

Fig. 8. Vegetation and granite surfaces from the same geographic area across different flights (f130503r16, f130612r08, f130626r11, and f131105r13).

Fig. 7. Typical fit using the linearized three phase retrieval. The retrieval window included the 1140 nm vapor band as well as diagnostic water and ice absorption features. The top row
showsmeasured andmodeled spectra. The middle shows estimated transmittances by each component. Residuals are given in the bottom row as a percentage of the maximum TOA re-
flectance. Left: absorption dominated by water vapor. Right: absorption due to atmospheric features and liquid water.

6 D.R. Thompson et al. / Remote Sensing of Environment xxx (2015) xxx–xxx

Please cite this article as: Thompson, D.R., et al., Atmospheric correction for global mapping spectroscopy: ATREM advances for the HyspIRI
preparatory campaign, Remote Sensing of Environment (2015), http://dx.doi.org/10.1016/j.rse.2015.02.010
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Three phases of water
[Thompson et al., Surveys in Geophysics 2018]

8/12/20
david.r.thompson@jpl.nasa.gov 20

Yosemite National Park (HyspIRI Sierra Box)
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Ivanpah field 
validation
[Thompson et al., Surveys 
in Geophysics 2018]

Scott Nolte, JPL

Ivanpah Playa
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Spectral corrections improve 
atmosphere retrievals
[Thompson et al., Remote Sensing of Environment 2018]
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Ongoing: Optimal Estimation for iterative 
fits of surface and atmosphere
[Thompson et al., Remote Sensing of Environment 2018]

Bayesian Maximum a Posteriori 
estimate using a combined model of 
surface, atmosphere, instrument
Improves atmospheric correction 
accuracy
Rigorous uncertainty accounting
Optimal weighting of information 
from instrument vs. domain 
knowledge

https://github.com/isofit/isofit
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AVIRIS-C f170127t01p00r16 
(subset, visible bands)

Aerosol Optical Depth at 550 nm

Aerosol Optical Depth Uncertainty

Hot crater

Example: 
volcano 
observations

Combined estimate of H2O vapor, AOT, 
surface reflectance and temperature
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Stray SRF Measurement model 
Adapted from [Zhong et al., 2006]
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Stray SRF Measurement model 
Adapted from [Zhong et al., 2006
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Stray SRF Measurement model 
Adapted from [Zhong et al., 2006]



A Linear SRF Correction Matrix
Calculate a Moore-Penrose Pseudoinverse:

This estimates the nominal SRF:

A similar correction fixes cross-track stray light
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India Validation Results
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• 26 of 37 flight days show significant improvements (p < 0.001) 
• Typical improvement is 20-35%
• No flight day shows a statistically significant accuracy reduction 

Fractional improvement 
for 277 scenes



Agreement with laboratory data
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Spatial dimension
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• Exploit Near-Infrared (NIR) ocean reflectance 
• Use a haze-free day to constrain path radiance and adjacency effects
• Use a wind-free day with nadir observations to limit glint
• Dark water should be highly absorbant in NIR
• Dataset: 2015 Greenland ice flow
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“Halo” reduction
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Original RGB 612 nm, equalization stretch
(0-3 uW nm-1 sr-1 cm-2)

612 nm, after CRF correction



Retrieve Stray SRF from a 
“Calibration Scene”
Death Valley Transect, 2014 (visible RGB)
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Predict A band radiances using a Digital Elevation Model

Nonlinear least squares optimization finds SSRF parameters



Estimation accuracy for 
Gaussian SSRF (simulated)
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Estimation accuracy for 
Lorentz SSRF (simulated)
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Fit error for 
candidate 
SSRF shapes
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Improvement in O2 A band fit
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Radiometric 
calibration
repeatability
(hangar protocol)
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